NMR Studies on Uranyl(V1) Complexes with L-Histidine, Imidazole and Derivatives

A. MARZOTTO

Istituto di Chirmca e Tecnologia dei Radioelementr de1 C.N.R., Padua, Italy

and H. KOZŁOWSKI

Institute of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland

Received April 7, 1982

The interaction of L-histidine, imidazole and N-methylimidazole with uranyl nitrate and acetate has been investigated both in D_2O *and* CD_3OD *by 'Hand 13CNMR measurements.*

7he results suggest the formation of complexes of uranyl(VI) ion with imidazole and methylimidazole through a nitrogen atom only in CD30D solutions. No direct involvement of the ring nitrogen donors in uranyl ion binding seems to occur in aqueous solutions at pH 3.3 or 4.0, either for imidazole or the imidazole side-chain of L-histidine molecule. The major coordination site of the latter ligand is the carboxylate group.

Introduction

Imidazole, a side-chain donor system of L-histidine seems to play an important role in metal ion binding in many bioinorganic systems (see $e.g.$ [1]). Uranyl(V1) ion as a cation seems to prefer oxygen donor set and, at least m its complexes with aminoacids in suitable pH regions, it interacts mostly with carboxyl groups $[2-7]$. Our previous physicochemical measurements on 1:2 and 1.1 solid dioxouranium(VI) complexes of imidazole suggested a coordination at the pyridine nitrogen (N-3) when the imidazole ring was reacted with uranyl nitrate in ethyl acetate and at both N-l and N-3 atoms when the same imidazole solution was reacted with uranyl acetate [8]. In the latter coordination a polymeric structure is probably the result as found for imldazole complexes of $Co(II)$ and $Zn(II)$ [9].

Recent X-ray work of Perry *et al.* [10] has shown that, under the conditions used m aqueous solution, the formed complex contains imidazole molecule but no direct binding to uranyl ion was found. One of the reasons of the lack of direct binding between uranyl ion and imidazole molecule could be the high pK_{imid} value (~6.0). To increase the possibility of

 UO_2^{2+} binding to imidazole we have carried out experiments in aqueous and methanol solutions by ¹H and ¹³C NMR measurements.

Imidazole N-Methylimidazole L-Histidine

Experimental

Materials

Imidazole(Imid), N-methylimidazole(N-M-Imid) and L-histidine (His) were purchased from Fluka A.G. $UO₂(NO₃)₂6H₂O$ and $UO₂(CH₃COO)₂2H₂O$ were obtained from Carlo Erba. Tetradeuteromethanol (99.5%) and deuterium oxide (99.8%) were Ega-Chemie products.

Methods

'H and 13C NMR spectra of 0.2 M and 0.1 *M* ligands in CD₃OD or ²H₂O were recorded at 28 °C at varying dioxouranium(VI)/ligand molar ratios by using T60 and FT-80 Varian spectrometers. The spectra in ${}^{2}H_{2}O$ of imidazole or L-histidine upon UO_2^{2+} addition were measured at pH 3.3 or pH \sim 4.0 respectively, since precipitation occurred at higher pH. The pH values adjusted with NaOH, $HNO₃$ or $CH₃COOH$ were measured with a Radiometer TTT2 pH meter. No correction for the D_2O solvent was applied. Chemical shifts expressed m δ /ppm were related to TMS as internal standard for CD30D solutions and to dioxane converted to TMS scale for D_2O solutions.

0020-1693/82/0000-0000/\$02.75 0 Elsevler Sequoia/Printed in Switzerland

Compound	$C-2-H$	$C-5-H$	α -CH	β -CH ₂	\rm{COO}^-	$C-2$	$C-4$	$C-5$	α -CH	β -CH ₂
Histidine	8.85, 1H	7.57, 1H	4.19, 1H	3.47, 2H	105.93	67.46	60.79	51.21	-12.93	-40.77
Histidine + $UO2$ nitrate 8.81, 1H 1:0.25		7.55, 1H	4.24, 1H	3.49.2H						
Histidine + UO_2 nitrate 8.80, 1H 1:0.5		7.54, 1H	4.28. 1H	3.52, 2H						
Histidine + UO_2 nitrate 8.82, 1H 1:1		7.58, 1H	4.38, 1H	3.60, 2H	107.75	67.46		60.79 51.21	-12.34	-40.65
Histidine + $UO2$ nitrate 8.80, 1H 7.59 1H 1:2			4.41, 1H	3.67, 2H	107.26	67.46	60.91	51.21	-12.38	-40.65
Δ ppm =	-0.05	$+0.02$	$+0.22$	$+0.20$	$+1.33$	0.00	$+0.12$	0.00	$+0.55$	$+0.12$

TABLE I. ¹H^a and ¹³C^b NMR Chemical Shifts of Free L-Histidine and UO₂ Nitrate Containing Solutions in D₂O at pH = 3.95 in ppm (δ) .

 b 13_C nmr chemical shifts ^a¹H nmr chemical shifts are measured downfield from TMS, using dioxane as an internal standard. are measured downfield from dioxane used as an internal standard.

TABLE II. ¹H and ¹³C^a NMR Chemical Shifts of Free Imidazole and UO₂ Nitrate Containing Solutions in CD₃OD in ppm (8).

Compound	$C-2-H$	$C-4-H$ $C-5-H$	$C-2$	$C-4$ $C-5$
Imidazole	7.77, 1H	7.15, 2H	136.48	122.74
Imidazole + $UO2$ nitrate 1:0.2	8 20, 1H	7.35, 2H	136.20	121.94
Imidazole + $UO2$ nitrate 1.0.5	8.75, 1H	7.60, 2H	135.81	120.92
Imidazole + $UO2$ nitrate	8.87, 1H	7.61, 2H	Δ ppm = -0.67	-1.82
1:1				
Imidazole + $UO2$ nitrate 1:2	8.88, 1H	7.60, 2H		
Δ ppm =	$+111$	$+0.45$		

a ¹⁴H and ¹³C nmr chemical shifts are measured downfield from TMS used as an internal standard.

Results and Discussion

UO_2^{2+} Interaction with L-Histidine and Imidazole in **Agueous Solutions**

The changes of ${}^{1}H$ and ${}^{13}C$ chemical shifts upon UO_2^{2+} addition in the solutions containing imidazole up to pH \sim 3.3 are very small and do not suggest any direct involvement of the ligand nitrogens in uranyl ion binding. This result is in agreement with the recent X-ray work mentioned above [10]. Also the NMR results obtained for the UO_2^{2+} -His solutions do not indicate any imidazole involvement in metal ion binding as reported in Table I. The major changes in the chemical shifts of α -CH and β -CH₂ protons as well as carbon chemical shifts of COO"

and α -CH suggest however that histidine may coordinate to dioxouranium(VI) ion via the carboxyl donor. These changes are similar to those found in the other aminoacid systems [2-7] in which carboxyl coordination was proposed. The involvement of the uranyl ion in the binding of L-histidine may also be suggested from IR spectrum of D_2O solutions. The asymmetric stretching band of O-U-O group, ν_3 , observed at 952 cm^{-1} in the free ligand solutions occurs at lower frequencies, *i.e.* to ~ 910 cm⁻¹, when histidine is added.

The profiles obtained by plotting the chemical shifts of α -CH and β -CH₂ protons as a function of the UO_2^{2+} : Histidine molar ratio, in D_2O at pH 4, show a break at 1:1 molar ratio. This suggests the

Compound	$C-2-H$	$C-4-H$ $C-5-H$	CH ₃ acet.	$C-2$	$C-4$ $C-5$	$CH3$ acet.
Imidazole	7.77, 1H	7.15, 2H		136.48	122.75	
Imidazole + $UO2$ acetate 1:0.2	7.95, 1H	7.27, 2H	2.47	136.85	122.78	25.72
Imidazole + $UO2$ acetate 1:0.5	8.12, 1H	7.34, 2H	2.53	137.42	122.88	26.40
				Δ ppm = +0.94	$+0.13$	
Imidazole + $UO2$ acetate 1:1	8.40, 1H	7.41, 2H	2.54			
Imidazole + $UO2$ acetate 1:2	8.52, 1H	7.44, 2H	2.58			
Δ ppm =	$+0.75$	$+0.29$				

TABLE III. ¹H and ¹³C^a NMR Chemical Shifts of Free Imidazole and UO₂ Acetate Containing Solutions in CD₃OD in ppm (δ).

^aChemical shifts are measured downfield from TMS used as an internal standard.

TABLE IV. ¹H and ¹³C NMR Chemical Shifts* of Free N-Methylimidazole and UO₂ Nitrate Containing Solutions in CD₃OD in ppm (6).

Compound	$C-2-H$	$C-5-H$	$C-4-H$	1'CH ₃	$C-2$	$C-5$	$C-4$	$C-1'$
N-M-Imid	7.67, 1H	7.15, 1H	7.05, 1H	3.78.3H	139.20	129.18	121.84	33.55
$N-M-Imid + UO2 nitrate$ 1:0.25	8.24, 1H		7.37, 2H	3.89, 3H	139.10	126.68	122.97	34.68
$N-M-Imid + UO2 nitrate$ 1:0.5	8.68, 1H		7.53, 2H	3.95, 3H	139.00	125.85	123.20	34.93
					Δ ppm = -0.20	-3.33	$+1.36$	$+1.38$
$N-M-Imid + UO2 nitrate$ 1:1	8.88, 1H		7.62, 2H	4.00, 3H				
$N-M-Imid + UO2 nitrate$ 1:2	8.92, 1H		7.64, 2H	4.02, 3H				
Δ ppm =	$+1.25$	$+0.54$		$+0.24$				

*Chemical shifts are taken downfield from TMS used as an internal standard. Abbreviation: N-M-Imid = N-Methylimidazole.

formation of $1:1$ complexes, with both uranyl nitrate and uranyl acetate as major species in solution.

$UO₂²⁺$ Interaction with Imidazole and Its Derivative *in CD300*

The UO_2^{2+} interaction with imidazole in methanol solution is much more evident than that found for the aqueous solutions, as shown in Tables II and III. The downfield shift of C_2H and C_4H , C_5H protons in the presence of uranyl ion depends on UO_2^{2+} : imidazole molar ratio and the obtained plot may indicate that the major species in the UO_2^{2+} nitrate containing solution is the 1:2 UO_2^{2+} : imid complex.

A similar though less univocal dependence may suggest that UO_2^{2+} acetate binds only one molecule of imidazole in the dominant complex species.

The ¹³C NMR results support the involvement of imidazole nitrogen in uranyl ion binding (Tables II, III). The interesting feature of carbon spectra is the chemical shift variation upon coordination of uranyl nitrate and acetate. Each of the latter salts displaces the resonance signal in different directions *i.e.* downfield (acetate) or upfield (nitrate). This strongly suggests a direct influence of the anion $(NO₃⁻$ and $CH₃COO⁻)$ on the coordination mode of the imidazole molecule. Such an influence can occur when one (acetate) or both

Compound	$C-2-H$	$C-5-H$	$C4-H$	1'CH ₃	$CH3$ acet.	$C-2$	$C-5$	$C-4$	$C-1'$	$CH3$ acet.
N-M-Imid	7.67, 1H	7.15, 1H	7.05, 1H	3.78, 3H		139.20	129.18	121.84	33.55	
$N-M-Imid +$ $UO2$ acetate 1:0.25	7.91, 1H	7.23, 1H	7.20, 1H	3.82, 3H	2.48	139.45	128.85	122.12	33.66	26.03
$N-M-Imid +$ $UO2$ acetate 1:0.5	8.10, 1H	7.32, 1H	7.30, 1H	3.82, 3H	2.52	139.47	128.42	122.27	34.11	25.73
						Δ ppm = +0.27	-0.76	$+0.43$	$+0.56$	
$N-M-Imid +$ $UO2$ acetate 1:1	8.32, 1H		7.39, 2H	3.82, 3H	2.55					
$N-M-Imid +$ $UO2$ acetate 1:2	8.50, 1H		7.42, 2H	3.80, 3H	2.58					
Δ ppm = +0.83 $+0.32$			$+0.02$							

TABLE V. ¹H and ¹³C NMR Chemical Shifts* of Free N-methylimidazole and UO₂ Acetate Containing Solutions in CD₃OD in ppm (6).

*Chemical shifts are measured downfield from TMS used as an internal standard. Abbreviation: N-M-Imld = N-Methylimidazole.

the anions are also directly involved in metal ion coordination in the studied solutions.

The different behaviour of uranyl acetate and nitrate is also observed in then coordination to the N-methyl derivative of imidazole. The involvement of N3 donor in uranyl ion binding could be suggested by the considerable changes of proton and carbon chemical shifts upon UO_2^{2+} coordination as shown in Tables IV and V. The features observed for the chemical shifts dependence on UO_2^{2+} :ligand molar ratio are very close to those found for imidazole containing solutions. Thus, the plots suggest that' N-methylimidazole forms as a major species a 1:1 complex with UO_2^{2+} acetate and a 2:1 complex with UO_2^{2+} nitrate as found above for imidazole.

The present results suggest that the imidazole donors are involved in the binding of uranyl ion, and are in good agreement with the results obtained with the solid complexes [8]. The results obtained in aqueous solution are negative because the pH range available for the measurements is

too acidic to allow such coordination to occur. It seems clear, however, that imidazole may be involved in UO_2^{2+} binding as histidine side-chain in proteins where the pH problem met in this study does not exist.

References

- 1 R. J. Sundberg and R. B. Martin, Chem. *Rev., 74, 471* (1974) and references therem.
- 2 A. Marzotto, *Chem. Biol Interact., 14, 383* (1976).
- *3* A. Marzotto, *J. Cryst. Mol. Struct., 6, 259* (1976).
- *4* A. Marzotto, *J. Inorg. Nucl. Chem., 39,* 2193 (1977).
- 5 A. Marzotto, L. Garbin and F. Braga, J. Inorg Biochem., *10, 257* (1979).
- *6* H. Wieczorek and H. Kozlowski, *Inorg Nucl. Chem. Letters, 16, 401* (1980).
- *7* H. Kozfowski, H. Wieczorek, B. Jeiowska-Trzebiatowska and A. Marzotto, Inorg. Chum. *Acta, 54, L107* (1981).
- 8 A Marzotto, M. Nicolim, F. Braga and G. Pinto, *Inorg Chrm. Acta, 34,* L295 (1979).
- M. Goodgame and F. A. Cotton, *J. Am. Chem. Soc.*, 84, 1543 (1962).
- 10 D. L. Perry, H. Ruben, D. H. Templeton and A. Zalkm, *Inorg.* Chem., 20, 1067 (1981).